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Abstract. We discuss the origin of the non-decoupling effects of the heavy Higgs bosons within the two
Higgs doublet extension (THDM) of the standard model (SM) and illustrate it by means of the one-loop
calculation of the differential cross sections of the process e+e− → W+W − in both the decoupling and the
non-decoupling regimes. We argue that there are many regions in the THDM parametric space in which
the THDM and SM predictions differ by several percents and such effects could, at least in principle, be
testable at the future experimental facilities.
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1 Introduction

Though having been on the market for more than thirty
years, the two Higgs doublet model (THDM) [1] still pro-
vides one of the most viable extensions of the standard
model (SM) and, surprisingly enough, the activity in this
field seems to grow in the last decade – see e.g. [2–6] and
references therein. It earns its popularity namely because
of its capability to incorporate many sources of physics
beyond SM [7, 8], be it CP -violation in the Higgs sector,
additional contributions to the anomalous magnetic mo-
ment of the muon or simply the fact that the two Higgs
doublet structure with five massive physical states (and at
least one around the weak scale) mimics nicely many fea-
tures of the minimal supersymmetric SM (MSSM). On top
of that, as we shall see, the Higgs sector of THDM can ex-
hibit some particular features which are completely absent
in MSSM, namely the relatively large non-decoupling ef-
fects of the heavy Higgs bosons [9–16] which can arise once
the heavy Higgs spectrum is sufficiently non-degenerate.

This paper is organized as follows: in Sect. 2 we present
a general systematic discussion of the origin of various non-
decoupling effects and the connection of their magnitude
with the parameters of the Higgs potential and the shape
of the heavy Higgs spectrum.

In Sects. 3 and 4 we use these results to estimate quan-
titatively the scale of the effects in question in the physical
process of particular interest, namely e+e− → W+W−.
We thus extend the earlier analysis of Kanemura et al. [10]
based on the equivalence theorem (ET) for longitudinal
vector bosons [17], valid in the large s limit. Having in
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hand the results of our previous works [18,19] in which we
discussed the non-decoupling structures arising in the one-
loop triple gauge vertices of THDM we can go far beyond
the ET approximation.

Section 5 is devoted to several quantitative illustrations
of the typical behavior of the relevant cross sections both
in the decoupling and the non-decoupling regimes, in full
agreement with the estimates.

2 THDM overview

Adopting the notation of [21] the most general form of the
THDM Higgs potential reads
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Here the Φ1 and Φ2 are two SU(2) doublets with the
same SM-like hypercharges. The neutral components of
both of them can develop non-zero VEVs around the weak
scale and break the electroweak symmetry downto the elec-
tromagnetic U(1) in the usual manner.
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The massive Higgses h0, H0, A0 and H± as well as the
Goldstone bosons G0 and G± are then “encoded” within
these doublets as

Φ1 =
1√
2

×
[ √

2G+ cos β − √
2H+ sin β

H0 cos α − h0 sin α + v1 + iG0 cos β − iA0 sin β

]
,

Φ2 =
1√
2

×
[ √

2G+ sin β +
√

2H+ cos β

H0 sin α + h0 cos α + v2 + iG0 sin β + iA0 cos β

]
,

where as usual tan β = v2/v1. For the sake of simplicity we
take both v1 and v2 real. Next, the neutral scalar mixing
angle α is given by

cos2(α − β) =
m2

L − m2
h0

m2
H0 − m2

h0

, (2)

where we have denoted

m2
L ≡

[
λ1 cos4 β + λ2 sin4 β +

1
2

(
λ + 2D sin2 β

)]
v2,

with λ ≡ λ3 + λ4 + λ5 and D ≡ λR
7 tanβ + λR

6 cot β (the
superscript R denotes the real part).

2.1 The physical Higgs spectrum

Let us inspect the general formulae for the physical Higgs
masses descending from the potential (1):
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where

M2 ≡ m2
12

R

sin β cos β
, κ ≡ − cos 2β

cos 2α
,

A1 ≡ λ1 sin2 α − λR
7 tanβ cos2 α,

A2 ≡ λ1 cos2 α − λR
7 tanβ sin2 α,

B1 ≡ λ2 sin2 α − λR
6 cot β cos2 α,

B2 ≡ λ2 cos2 α − λR
6 cot β sin2 α,

C ≡ λR
7 tanβ − λR

6 cot β.

Notice that the two mass parameters m2
11 and m2

22 were as
usual fixed by the necessary conditions for the VEVs of Φ1
and Φ2 to minimize the potential. For λ6 = λ7 = m12 = 0
one recovers the formulae given previously in the literature,
see e.g. [21, 22] and references therein.

Let us call heavy Higgs mass limit the situation, in
which the masses of all the THDM Higgs bosons but h0

are much larger than the weak scale.
One can see that there are in general two basic quanti-

ties responsible for the shape of the Higgs spectrum (3): the
gauge singlet mass parameter M (alias m12) and the VEV
magnitude v. Since M is not protected by the gauge sym-
metry it could be naturally much larger than v and in such
case the heavy Higgs mass limit is achieved entirely by en-
largingM . On the other hand, there are unitarity bounds on
the masses of the “heavy” members of the Higgs spectrum
preventing them to be extremely heavy [23]. Moreover, the
v is often accompained by (in principle) numerically large
factors ∝ λ7 tanβ (or λ6 cot β) which enhances some of the
“λv2 terms” obviating to large extent the necessity of hav-
ing a dominant M to achieve the heavy Higgs mass limit.

This is in sharp contrast with the situation in the MSSM
where only one free parameter µ is left to play with, be-
cause the quartic couplings in the Higgs potential are fixed
by supersymmetry.

2.2 Non-decoupling regime and spectrum distorsions

Therefore, it is convenient to distinguish between twodiffer-
ent modes in which the “heavy part” of the Higgs spectrum
acquires the masses.
(1) If it is due to the dominance of the singlet mass terms
(M -components) in the relations (3) let us call it the de-
coupling regime. Perhaps it is worth noting that although
the only explicit mass present in (3) is m12 one should not
forget about m11 and m22 that are “hidden” in particular
combinations of the other parameters in the game which
can to some extent mimic their role unless λ6,7 = 0 (see
also the comments in Sect. 5.2) .
(2) The contributions coming from the M components are
comparable with the other “λv2” parts in (3); such situa-
tion is called the non-decoupling regime.

As the terminology suggests, in the decoupling regime
the heavy Higgs bosons exhibit a decoupling behavior in
accordance with the famous Appelquist–Carazzone theo-
rem [24]. In this case one can easily show that the require-
ment of coincidence of the THDM h0 with the SM Higgs
boson η (with masses not far from mW ) and the relation (2)
lead to κ ∼ 1 and therefore the heavy Higgs spectrum is
quasidegenerate, mH0 ∼ mA0 ∼ mH± ∼ M .
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On the other hand, in the non-decoupling regime the
heavy Higgs spectrum should be distorted and one can in
principle expect substantial effects inmeasurable quantities
which should grow with the weights of the λv2 terms in (3),
i.e. with the magnitude of such a distortion. This was used
as a non-trivial consistency check of the numerical results
we present below.

From this point of view the behavior of the heavy Higgs
bosons in the MSSM is very simple in comparison with
THDM; in fact, in MSSM there is no such non-decoupling
regime and all the heavy Higgs bosons therein should there-
fore tend to decouple from the weak scale physics. This was
confirmed explicitly in [25].

This can be used e.g. as a simple heuristic explanation
of what happens in [21, 22], where the considered non-
decoupling effects of the heavy part of the Higgs spectrum
tend to minimize provided a partial degeneration in the
heavy Higgs sector is achieved (mH± → mA0).

In the remainingpart of this paperwedemonstrate these
principles in the particular case of physical cross sections of
the process e−e+ → W−W+ computed within the THDM
framework at one-loop order in comparison with the SM
predictions. We generalize the earlier work [10] beyond the
ET approximation used therein. Among other things, our
approach allows one to consider general configurations of
polarizations of the final state vector bosons.

3 dσ(e−e+ → W −W +) in THDM versus SM

Since the one-loop form of the differential cross section
within the SM is very well known [26], we can use the
similarity of THDM to simplify our life by dealing with
the pieces of information which are specific for THDM,
namely the contributions to the one-loop amplitude and
the bremsstrahlung terms that are different for THDM
and SM.

Therefore, it is reasonable to work with a quantity that
measures just the deviation of the THDM and SM cross
sections under consideration [10]; let us define it as

δ ≡ dσTHDM(e+e− → W+W−)
dσSM(e+e− → W+W−)

− 1 (4)

the two differential cross section in the previous expression
can be written as

dσ = dσA + dσB,

where the pieces dσA come from the “amplitude-squared”
terms

dσA = k1 |M|2 dLips, (5)

while the dσB terms represent the bremsstrahlung effects

dσB = k2

∫
dkγ |B(kγ , . . .)|2 dLips. (6)

Expanding now the THDM amplitude around the corre-
sponding SM form

MTHDM
tree = MSM

tree + ∆Mtree,

MTHDM
loop = MSM

loop + ∆Mloop

(∆Mtree and ∆Mloop are just the differences of the tree-
and one-loop amplitudes respectively), one can recast the
δ as

δ = 2Re
[

∆Mtree + ∆Mloop

MSM
tree

]
(7)

+
k2

k1

∫
dkγ

∣∣BTHDM
∣∣2 − ∣∣BSM

∣∣2∣∣MSM
tree

∣∣2 + . . .

Here the ki are O(1) geometrical factors and the inte-
gration over kγ covers the IR-singular piece of the phase
space spanned by the photon momenta.

3.1 Bremsstrahlung terms

Let us first explore the bremsstrahlung terms in (7). Using
the identity |A|2 − |B|2 = 1

2 (A−B)(A+B)∗ +h.c. we see
that the only terms that survive (i.e. those that are not
common to both THDM and SM) come from the graphs
(H denotes the generic neutral Higgses in the game):

��
�

and���

These diagrams are necessary to regulate the singular
infrared behavior of dσA caused by the presence of

�
�

� and�� �

All the above graphs are IR-singular but the divergences
cancel in the physical cross section formulae and once we
specify the IR regulator scale they provide just logarithmic
corrections to dσA. As we shall see, the presence of the
electron Yukawa coupling makes these terms suppressed
by factors of the order of me/mW ∼ 10−5 with respect to
the leading contributions to δ coming from the IR-regular
terms in dσA. Thus, in the leading approximation we can
omit the bremsstrahlung effects entirely.

3.2 The leading term

This means that we can forget about the second term of
the expansion (7) and also keep only the IR-regular subset
of graphs corresponding to MTHDM

loop , which we shall denote

by MTHDM
loop . Next, it is worth noting that the ∆Mtree in (7)

also suffers of the “omnipresent” electron Yukawa coupling
which again makes it much smaller in comparison with the
leading loop contributions to MTHDM

loop coming (as we shall
see) from the renormalization of the triple gauge vertices
(TGV). To conclude, the leading contribution to δ can be
written in the form

δ = 2Re
∆Mloop

MSM
tree

+ . . . (8)
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4 Computation of ∆Mloop

Thus, all we need is only the sum of all the IR-safe one-loop
diagrams which are not shared by the THDM and SM, i.e.
those loop graphs which contain at least one Higgs prop-
agator.

4.1 Renormalization scheme and gauge choice

We have decided to use the on-shell renormalization scheme
[27] in which the renormalized masses parametrizing the
one-loop quantities coincide with the physical masses of the
fields in the game; this simplifies greatly the interpretation
of various limits under consideration (in particular, we use
the set of counterterms defined in [28]). At first glance, it
might seem that this also obviates the necessity to deal with
the renormalization of the external legs of Feynman graphs.
In fact, this is not true because in the on-shell scheme non-
trivial finite parts of various counterterms reappear and
these bring back the self-energy diagrams. We will work in
the Feynman (ξ = 1) gauge to have the IVB propagators
as simple as possible. This of course requires one to take
into account also the unphysical Goldstone bosons.

Note that there is no need to take care of the ghost
fields (which do not decouple from the Higgs sector unless
ξ = 0) because all the relevant topologies contributing to
∆Mloop containing the ghost loop involve also the Yukawa
couplings (one-loop irreducible graphs) or do not contribute
substantially (oblique corrections).

4.2 Feynman diagrams contributing to ∆Mloop

Let us first classify the topologies of Feynman diagrams
contributing to∆Mloop that donot subtract trivially in (4),
i.e. those that are not common to the two models. In what
follows, the symbol � denotes a loop involving at least
one Higgs propagator while � is used for loops built en-
tirely from the other SM fields. In both cases also the
corresponding counterterms must be taken into account.

Concerning the tree-level origin of the relevant one-loop
graphs one can identify several subgroups of them, namely:

Neutrino in the t-channel:

(a)� (b)�
Z and γ in the s-channel:

(c)� (d)� (e)�

Higgs in the s-channel:

(f)� (g)� (h)�
(i)� (j)�

(k)� (l)� (m)�
(n)� (o)�

Box diagrams:

(p)�
The total number of the graphs with the topologies

displayed here is enormous. However, not all of them are
relevant in the leading approximation.

4.3 Relevant topologies

As before, the presence of the electron Yukawa couplings
allows one to neglect all graphs of the types (a), (b), (c), (f),
(g), (h), (i), (l), (m) and (n) in comparison with the types
(d), (e), (k), (o) and (p) where there is no such factor. Next,
the blob in the type (k) provides just a correction to the
Yukawa vertex which is fixed by the renormalization con-
ditions to be comparable with the Yukawa coupling itself.
The diagrams of type (o) are again me/mW suppressed; the
electron mass here arises from the Dirac equation. We are
therefore left with the IVB “vacuum polarization” graphs
in (d) (the oblique corrections to the IVB propagators),
the corrections to the triple gauge vertices (e) and the UV
convergent box diagrams (p). However, among them only
those involving the Higgs bosons coupled to the IVB lines
need to be taken into account, otherwise the small Yukawa
coupling reappears. Next, since the boxes are UV-finite
they must decouple trivially in the heavy Higgs mass limit
described above. All that remain at the leading order are
therefore the graphs of the type

(i) � (ii) �
that we shall treat separately.
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4.4 Decoupling behavior of the oblique corrections

The renormalized inverse propagator of a massive vector
boson is given by

iΓ (1)
µν (k) = iΓ (0)

µν (k) + iΠµν(k) + i(Z − 1)k2PT
µν

−iδm2gµν + ik2PL
µνδα−1, (9)

where PT
µν ≡ gµν − kµkνk−2 and PL

µν ≡ kµkνk−2 are the
transverse and longitudinal projectors,

iΠµν(k) ≡ ik2ΠT(k2)PT
µν + ik2ΠL(k2)PL

µν

is the sum of all relevant one-loop graphs, (Z − 1) and
δm2 are the wave-function and mass counterterms and
Γ

(0)
µν = (k2−m2)PT

µν +α−1
(
k2 − αm2

)
PL

µν is the tree-level
massive gauge boson propagator. In the on-shell scheme
the counterterms are fixed by [27]

ΓT(k2 = m2) = 0,
d

dk2

∣∣∣∣
k2=m2

ΓT(k2) = 1, (10)

which yields

Z − 1 = −
[
ΠT(m2) + m2ΠT′

(m2)
]
,

δm2 = −m4ΠT′
(m2).

We do not need to deal with the longitudinal part of the
renormalized IVB propagators because they typically pro-
duce the suppressing me/mW factors. We can also omit
all tadpole diagrams: their contributions to ΠT are pro-
portional to k−2 and therefore cancel (as they should) in
Z − 1 and [k2ΠT(k2) − δm2] in ΓT.

The remaining graphs are those appearing in the mas-
sive scalar electrodynamics. It is already easy to show that
such contributions to δ fall rapidly in the heavy Higgs mass
limit regardless of the way the limit is achieved.

4.5 Triple gauge vertex corrections

Concerning the differences of the heavy Higgs corrections
to the triple gauge vertices in THDM and in SM the major
part of the work has already been done before [18], so let
us mention just the important points. The differences of
the relevant vertex functions can be written in the form

∆ΓV WW
σµν

=
3∑

i=1

(
∆δZTGV + ∆ΠV WW

i

)
Ci

σµν +
7∑

i=4

∆ΠV WW
i Ci

σµν

+sym.,

where

C1
σµν ≡ q1σgµν , C2

σµν ≡ 2q2µgσν , C3
σµν ≡ q1µgσν ,

C4
σµν ≡ 1

m2
W

q1σq1µq1ν , C5
σµν ≡ 1

m2
W

q1σq1µq2ν , (11)

C6
σµν ≡ 1

m2
W

q1σq2µq1ν , C7
σµν ≡ 1

m2
W

q2σq1µq1ν

are basic kinematical structures composed of the outgoing
momenta q1,2 of the W± bosons in the final state. Next,

∆δZTGV ≡ (δZTGV )THDM − (δZTGV )SM (12)

are the differences of the corresponding finite parts of coun-
terterms ZTGV (computed by means of the W self-energy
diagrams) and

∆ΠV WW
i ≡ (

ΠV WW
i

)
THDM − (

ΠV WW
i

)
SM (13)

are the differences of the formfactors ΠV WW
i (descending

from the triangle diagrams contributing at the one-loop
level to the triple gauge vertices); for more details see [18].

4.6 δ revised

Armed by the information given in the last three subsec-
tions we are ready to write down the explicit formulae for
the leading part of (8):

∆Mloop
.=

∑
V =γ,Z

geeV gV WW v̄(p1)γλu(p2)
−igλσ

s − m2
V

×∆ΓV WW
σµν (q1, q2) ε∗µ(q1)ε∗ν(q2). (14)

Inspecting (11) and using the identities

q1.ε(q1) = q2.ε(q2) = 0 ,

we can write (denoting by A the set (q2
1 , q2

2 , q1.q2) and
correspondingly B ≡ (q2

2 , q2
1 , q2.q1), which is nothing but

the “sym.” operation applied on A [18])

∆ΓV WW
σµν (q1, q2) ε∗µ(q1)ε∗ν(q2) = ε∗µ(q1)ε∗ν(q2)

×
[(

∆ΠV WW
1 + ∆δZTGV

)
(A)q1σgµν

− (
∆ΠV WW

1 + ∆δZTGV

)
(B)q2σgµν

+
(
∆ΠV WW

2 + ∆δZTGV

)
(A)2q2µgσν

− (
∆ΠV WW

2 + ∆δZTGV

)
(B)2q1νgσµ

+∆ΠV WW
6 (A)

q1σq2µq1ν

m2
W

− ∆ΠV WW
6 (B)

q2σq1νq2µ

m2
W

]
.

If, for simplicity, we take the final state W bosons on the
mass shell, i.e. q2

1 = q2
2 = m2

W we get A = B and (14) can
be recast in the form

∆Mloop
.=

∑
V =γ,Z

geeV gV WW v̄(p1)γλu(p2)
−igλσ

s − m2
V

×
[(

∆ΠV WW
1 + ∆δZTGV

) (
m2

W , s
)
(q1 − q2)σgµν

+2
(
∆ΠV WW

2 + ∆δZTGV

) (
m2

W , s
)
(q2µgσν − q1νgσµ)
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+∆ΠV WW
6

(
m2

W , s
) q2µq1ν

m2
W

(q1 − q2)σ

]
ε∗µ(q1)ε∗ν(q2).

Next, the momentum conservation q1 + q2 + p1 + p2 = 0
and the Dirac equations /pi = me allow for further simpli-
fications. Plugging in the coupling constants given in [18]
one finally arrives at

∆MLR
loop

.= −ie22
{

1
s

[
M+

2

(
∆ΠγWW

1 + ∆δZTGV

)

−M+
3

(
∆ΠγWW

2 + ∆δZTGV

)
+

1
m2

W

M+
5 ∆ΠγWW

6

]

− 1
s − m2

W

[
M+

2

(
∆ΠZWW

1 + ∆δZTGV

)
(15)

− M+
3

(
∆ΠZWW

2 + ∆δZTGV

)
+

1
m2

W

M+
5 ∆ΠZWW

6

]}

and

∆MRL
loop

.= −ie22
{

1
s

[
M−

2

(
∆ΠγWW

1 + ∆δZTGV

)

−M−
3

(
∆ΠγWW

2 + ∆δZTGV

)
+

1
m2

W

M−
5 ∆ΠγWW

6

]

− cθ

sθ
g−

e

1
s − m2

W

[
M−

2

(
∆ΠZWW

1 + ∆δZTGV

)
(16)

− M−
3

(
∆ΠZWW

2 + ∆δZTGV

)
+

1
m2

W

M−
5 ∆ΠZWW

6

]}
,

where we have employed the notation of [26], namely

M+
2 ≡ v̄L(p1) /q1uR(p2)ε∗(q1).ε∗(q2),

M+
3 ≡ v̄L(p1)

[
/ε∗(q1)q1.ε

∗(q2)

− /ε∗(q2)q2.ε
∗(q1)

]
uR(p2), (17)

M+
5 ≡ v̄L(p1) /q1uR(p2) [q2.ε

∗(q1)] [q1.ε
∗(q2)] ,

M−
2 ≡ v̄R(p1) /q1uL(p2)ε∗(q1).ε∗(q2),

M−
3 ≡ v̄R(p1)

[
/ε∗(q1)q1.ε

∗(q2)

− /ε∗(q2)q2.ε
∗(q1)

]
uL(p2),

M−
5 ≡ v̄R(p1) /q1uL(p2) [q2.ε

∗(q1)] [q1.ε
∗(q2)]

and

g−
e ≡ 2s2

θ − 1
2sθcθ

,

with θ being the weak mixing angle. The LR and RL su-
perscripts above denote the helicity configurations of the
initial e+e− state.

The last missing piece is the tree-level amplitude MSM
tree

that can be recast in terms of these quantities as follows:

MSM,LR
tree = −ie22

(
1
s

− 1
s − m2

W

) [M+
2 − M+

3

]
(18)

and

MSM,RL
tree = −ie2 (19)

×
{

2
(

1
s

− cθ

sθ
g−

e

1
s − m2

W

) [M−
2 − M−

3

] 1
2s2

θ

1
t
M−

1

}

(cf. [26]). Substituting now (15)– (19) into (8) one can
calculate δ for both the leptonic helicity configurations.
The polarizations of the final states are encoded in the
invariants (17).

5 Results and further comments

We shall present our results obtained in two “maximally”
different situations: first, in the non-decoupling regime
with very hierarchical heavy Higgs spectrum and then
in the decoupling regime with almost degenerate heavy
Higgs masses.

Our input parameters in both cases are theHiggsmasses
in the game (mη, mh0 , mH0 , mA0 and mH±). Each such
set fixes four THDM parameters out of m12, λ1...7, β and
α; all the remaining ones are left to be chosen. For the sake
of simplicity we shall take

λ1 = λ2 ≡ λ12. (20)

5.1 Non-decoupling regime

The result displayed in Fig. 1 is obtained within the fol-
lowing option:

λ6 = λ7 = 0, m12 = 0, (21)

Notice that in such a case the heavy Higgs limit does not ex-
ist and therefore it is very natural to seek for non-decoupling
effects in such a scenario. We have parameterized the mag-
nitude of the heavy Higgs spectrum distortion by an over-
all multiplicative mass scale Λ. Due to the relations (3)
and (20) one obtains

λ12 =
m2

h0 + m2
H0

v2
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Fig. 1. δ as a function of m0
H = 20Λ, mA0 = 10Λ, mH± = 2Λ.√

s = 320 GeV. The heavy Higgs spectrum distortion grows
with Λ
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In a similar manner, we can translate the λ4, λ5:

m2
H± = − 1

2
(
λ4 + λR

5
)
v2,

m2
A± = −λR

5 v2.

The remaining parameters must obey

cos2(α − β) =
1

m2
H0 − m2

h0

×
[(

m2
H0 + m2

h0

) (
1 − 2s2

βc2
β

)

+2s2
βc2

β

(
λ3v

2 − 2m2
H±

) − m2
h0

]
. (22)

Choosing for simplicity1

λ3 = 1 and β → π
2

the last unspecified parameter α is given by (22). Let us
note that there is in fact no ambiguity in “fixing” α this way
because it enters all the relevant formulae via cos2(α − β)
only.

e+
L e−

R → W+
L W−

L :

The situation is particularly simple in the case of this po-
larization configuration because δ then turns out to be
independent of t and u. Moreover, in the case of the lon-
gitudinally polarized vector bosons in the final state we
can partially compare our results with the estimates [10]
obtained by means of the equivalence theorem.

The relevant invariants M−
2 , M−

3 and M−
5 read in

this case:

M−
2 =

s − 2m2
W

2m2
W

√
u t − m4

W ,

M−
3 =

s

m2
W

√
u t − m4

W ,

M−
5 =

s(s − 4m2
W )

4m2
W

√
u t − m4

W .

Notice that the common
√

u t − m4
W factors cancel in the

formula (8) and what remains is t and u independent.
Taking into account the form of the SM tree-level ampli-
tude (18), we see that the only relevant dynamical quantity
in the game is s and therefore the deviation of THDM and
SM predictions is “isotropic” (at least at the leading order).

The formulae for the formfactors ∆Πγ,ZWW
1,2,6 as well

as the counterterm deviation ∆δZTGV are given in [18].
Due to their enormous complexity it is impossible to write

1 Strictly speaking the limit β → π/2 is unphysical making
tan β infinite. What we mean is rather the setup with large
tan β motivated by low-energy SUSY models. However, since
λ6 and λ7 are put to zero by hand, the would-be singular
behavior of tan β is screened and does not enter the relations
of our interest.

8 10 12 14 16 18 20

0.005

0.01

0.015

0.02

δ(e+
Le−R → W+

L W−
L )

Λ

Fig. 2. δ as a function of Λ for m0
H = Λ + 10mW , mA0 =

Λ− 6mW , mH± = Λ− 5mW .
√

s = 200 GeV. The heavy Higgs
bosons decouple with the rising overall scale Λ since the distor-
tion ∆ ∼ mW of their spectrum remains fixed and ∆/Λ → 0

down the results in a reasonably compact form. We have
performed a numerical simulation in Mathematica together
with the FeynCalc and LoopTools packages.

Figure 1 tells us that (for a given realization of the Higgs
sector) the THDM cross section of the considered process
should be enhanced by several percents with respect to its
SM value and grow logarithmically with the heavy Higgs
spectrum distortion Λ, in perfect agreement with what was
anticipated on theoretical grounds in Sect. 2.2 and [18]. We
have checked that qualitatively the same happens also in
other similar setups.

5.2 Decoupling regime

We achieve the decoupling regime by taking all the heavy
Higgs masses quasidegenerate with a constant distortion
∆ ∼ mW much smaller than the overall scale Λ driving the
heavy part of the THDM Higgs spectrum. For ∆/Λ → 0 the
δ should tend to 0. As can be seen in Fig. 2 this is indeed the
case. This provides a non-trivial consistency check of our
results. What is interesting is the fact that this picture was
obtained within the setup with m12 → 0. There is nothing
that would contradict our previous considerations, because
m12 is not the only mass singlet parameter in the game.
There can be still big “hidden” singlets responsible for
such behavior, namely the m11 and m22 just “translated”
through the minimality conditions into combinations of
the other parameters. This can work whenever at least one
of the λ6 or λ7 is non-zero (justifying the choice (21) in
the non-decoupling case). As we have checked, it works
even better in the case of the “apparent” decoupling setup
driven by the allowed non-zero m12.

6 Conclusions

We have seen that within the THDM framework a non-
decoupling behavior of heavy Higgs bosons can occur quite
naturally. There is a simple phenomenological criterion
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for recognizing the character of the heavy Higgs effects
in the physical amplitudes, namely the magnitude of the
distortion of the heavy part of the Higgs spectrum. Since
there is no possibility to get large deviations from the
quasidegenerate heavy Higgs spectrum in the MSSM, the
heavy Higgs bosons in the minimal supersymmetry should
always decouple, which is fully compatible with the explicit
analyses in the literature [25].

Wehave given a general one-loop estimate of such effects
in the case of the physical process e+e− → W+W− within
THDM. In many cases the deviation of its cross section
from the SM results can be of the order of several percent,
in good agreement with some previous partial analyses
with longitudinally polarized vector bosons in the final
state based on ET approximation. In principle, such effects
could be visible in future experiments making the two Higgs
doublet extension still a viable candidate of a theory beyond
the standard model.
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